Wednesday, January 2, 2019

canine and feline spongiform encephalopathy tse prion 2019 update

EP-021 Canine Prions: A New Form of Prion Disease

Mourad Tayebi1, Monique A David2, Brian Summers3

1 University of Melbourne, Veterinary Sciences, Australia; 2Ausbiologics, Sydney, Australia; 3Royal Veterinary College, London, UK

The origin of bovine spongiform encephalopathy (BSE), which rapidly evolved into a major epidemic remains unresolved and was initially widely attributed to transmission of sheep scrapie to cattle with contaminated feed prepared from rendered sheep carcasses. Alternative transmission hypotheses also include feed contaminated with unrecognized subclinical case(s) of bovine prion disease or with prion-infected human remains. However, following the demonstration of a BSE case exhibiting the novel mutation E211 K, similar to the E200K mutation associated with most genetic CJD in humans, support for a genetic origin of prion disease in cattle is gaining momentum. In contrast to other animal species such as feline, the canine species seems to be resistant to prion disease as no canine prion cases were previously reported.

We describe here three cases of Rottweiler puppy (called RWD cases) with neurological deficits and spongiform change. We used animal bioassays and in vitro studies to show efficient interspecies transmission of this novel canidae prion isolate to other species.

Biochemical studies revealed the presence of partially proteinase K (PK)-resistant fragment and immunohistochemistry displayed staining for PrPSc in the cerebral cortex. Importantly, interspecies transmission of canine PrPSc derived from RWD3 brain homogenates following inoculation of hamsters led to signs of prion disease and replication of PrPSc in brains, spinal cords and spleens of these animals.

These findings if confirmed by further cases of prion disease in canidae and regardless of the origin of the disease would have a major impact on animal and public health.

PRION 2016 TOKYO



OR-09: Canine spongiform encephalopathy—A new form of animal prion disease

Monique David, Mourad Tayebi UT Health; Houston, TX USA

It was also hypothesized that BSE might have originated from an unrecognized sporadic or genetic case of bovine prion disease incorporated into cattle feed or even cattle feed contaminated with prion-infected human remains.1 However, strong support for a genetic origin of BSE has recently been demonstrated in an H-type BSE case exhibiting the novel mutation E211K.2 Furthermore, a specific prion protein strain causing BSE in cattle is believed to be the etiological agent responsible for the novel human prion disease, variant Creutzfeldt-Jakob disease (vCJD).3 Cases of vCJD have been identified in a number countries, including France, Italy, Ireland, the Netherlands, Canada, Japan, US and the UK with the largest number of cases. Naturally occurring feline spongiform encephalopathy of domestic cats4 and spongiform encephalopathies of a number of zoo animals so-called exotic ungulate encephalopathies5,6 are also recognized as animal prion diseases, and are thought to have resulted from the same BSE-contaminated food given to cattle and humans, although and at least in some of these cases, a sporadic and/or genetic etiology cannot be ruled out. The canine species seems to display resistance to prion disease and no single case has so far been reported.7,8 Here, we describe a case of a 9 week old male Rottweiler puppy presenting neurological deficits; and histological examination revealed spongiform vacuolation characteristic of those associated with prion diseases.9 Initial biochemical studies using anti-PrP antibodies revealed the presence of partially proteinase K-resistant fragment by western blotting. Furthermore, immunohistochemistry revealed spongiform degeneration consistent with those found in prion disease and displayed staining for PrPSc in the cortex.

Of major importance, PrPSc isolated from the Rottweiler was able to cross the species barrier transmitted to hamster in vitro with PMCA and in vivo (one hamster out of 5). Futhermore, second in vivo passage to hamsters, led to 100% attack rate (n = 4) and animals displayed untypical lesional profile and shorter incubation period.

In this study, we show that the canine species might be sensitive to prion disease and that PrPSc isolated from a dog can be transmitted to dogs and hamsters in vitro using PMCA and in vivo to hamsters.

If our preliminary results are confirmed, the proposal will have a major impact on animal and public health and would certainly lead to implementing new control measures for ‘canine spongiform encephalopathy’ (CSE).

References

1. Colchester AC, Colchester NT. The origin of bovine spongiform encephalopathy: the human prion disease hypothesis. Lancet 2005; 366:856-61; PMID:16139661; http:// dx.doi.org/10.1016/S0140-6736(05)67218-2.

2. Richt JA, Hall SM. BSE case associated with prion protein gene mutation. PLoS Pathog 2008;
4:e1000156; PMID:18787697; http://dx.doi.org/10.1371/journal. ppat.1000156.

3. Collinge J. Human prion diseases and bovine spongiform encephalopathy (BSE). Hum Mol Genet 1997; 6:1699-705; PMID:9300662; http://dx.doi.org/10.1093/ hmg/6.10.1699.

4. Wyatt JM, Pearson GR, Smerdon TN, Gruffydd-Jones TJ, Wells GA, Wilesmith JW. Naturally occurring scrapie-like spongiform encephalopathy in five domestic cats. Vet Rec 1991; 129:233-6; PMID:1957458; http://dx.doi.org/10.1136/vr.129.11.233.

5. Jeffrey M, Wells GA. Spongiform encephalopathy in a nyala (Tragelaphus angasi). Vet Pathol 1988; 25:398-9; PMID:3232315; http://dx.doi.org/10.1177/030098588802500514.

6. Kirkwood JK, Wells GA, Wilesmith JW, Cunningham AA, Jackson SI. Spongiform encephalopathy in an arabian oryx (Oryx leucoryx) and a greater kudu (Tragelaphus strepsiceros). Vet Rec 1990; 127:418-20; PMID:2264242.

7. Bartz JC, McKenzie DI, Bessen RA, Marsh RF, Aiken JM. Transmissible mink encephalopathy species barrier effect between ferret and mink: PrP gene and protein analysis. J Gen Virol 1994; 75:2947-53; PMID:7964604; http://dx.doi.org/10.1099/0022-1317- 75-11-2947.

8. Lysek DA, Schorn C, Nivon LG, Esteve-Moya V, Christen B, Calzolai L, et al. Prion protein NMR structures of cats, dogs, pigs, and sheep. Proc Natl Acad Sci U S A 2005; 102:640-5; PMID:15647367; http://dx.doi.org/10.1073/pnas.0408937102.

9. Budka H. Neuropathology of prion diseases. Br Med Bull 2003; 66:121-30; PMID:14522854; http://dx.doi.org/10.1093/bmb/66.1.121.

*** DEFRA TO SINGELTARY ON HOUND STUDY AND BSE 2001 ***

DEFRA Department for Environment, Food & Rural Affairs

Area 307, London, SW1P 4PQ Telephone: 0207 904 6000 Direct line: 0207 904 6287 E-mail: h.mcdonagh.defra.gsi.gov.uk

GTN: FAX:

Mr T S Singeltary P.O. Box 42 Bacliff Texas USA 77518

21 November 2001

Dear Mr Singeltary

TSE IN HOUNDS

Thank you for e-mail regarding the hounds survey. I am sorry for the long delay in responding.
As you note, the hound survey remains unpublished. However the Spongiform Encephalopathy Advisory Committee (SEAC), the UK Government's independent Advisory Committee on all aspects related to BSE-like disease, gave the hound study detailed consideration at their meeting in January 1994. As a summary of this meeting published in the BSE inquiry noted, the Committee were clearly concerned about the work that had been carried out, concluding that there had clearly been problems with it, particularly the control on the histology, and that it was more or less inconclusive. However was agreed that there should be a re-evaluation of the pathological material in the study.
Later, at their meeting in June 95, The Committee re-evaluated the hound study to see if any useful results could be gained from it. The Chairman concluded that there were varying opinions within the Committee on further work. It did not suggest any further transmission studies and thought that the lack of clinical data was a major weakness.

Overall, it is clear that SEAC had major concerns about the survey as conducted. As a result it is likely that the authors felt that it would not stand up to r~eer review and hence it was never published. As noted above, and in the detailed minutes of the SEAC meeting in June 95, SEAC considered whether additional work should be performed to examine dogs for evidence of TSE infection. Although the Committee had mixed views about the merits of conducting further work, the Chairman noted that when the Southwood Committee made their recommendation to complete an assessment of possible spongiform disease in dogs, no TSEs had been identified in other species and hence dogs were perceived as a high risk population and worthy of study. However subsequent to the original recommendation, made in 1990, a number of other species had been identified with TSE ( e.g. cats) so a study in hounds was less

critical. For more details see- http://www.bseinquiry.gov.uk/files/yb/1995/06/21005001.pdf
As this study remains unpublished, my understanding is that the ownership of the data essentially remains with the original researchers. Thus unfortunately, I am unable to help with your request to supply information on the hound survey directly. My only suggestion is that you contact one of the researchers originally involved in the project, such as Gerald Wells. He can be contacted at the following address.

Dr Gerald Wells, Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT 15 3NB, UK
You may also wish to be aware that since November 1994 all suspected cases of spongiform encephalopathy in animals and poultry were made notifiable. Hence since that date there has been a requirement for vets to report any suspect SE in dogs for further investigation. To date there has never been positive identification of a TSE in a dog.

I hope this is helpful

Yours sincerely 4

HUGH MCDONAGH BSE CORRESPONDENCE SECTION

======================================

HOUND SURVEY

I am sorry, but I really could have been a co-signatory of Gerald's minute.

I do NOT think that we can justify devoting any resources to this study, especially as larger and more important projects such as the pathogenesis study will be quite demanding.

If there is a POLITICAL need to continue with the examination of hound brains then it should be passed entirely to the VI Service.

J W WILESMITH Epidemiology Unit 18 October 1991

Mr. R Bradley

cc: Mr. G A H Wells

3.3. Mr R J Higgins in conjunction with Mr G A Wells and Mr A C Scott would by the end of the year, indentify the three brains that were from the ''POSITIVE'' end of the lesion spectrum.

TSE in dogs have not been documented simply because OF THE ONLY STUDY, those brain tissue samples were screwed up too. see my investigation of this here, and to follow, later follow up, a letter from defra, AND SEE SUSPICIOUS BRAIN TISSUE SAF's. ...TSS

TSE & HOUNDS

GAH WELLS (very important statement here...TSS)

HOUND STUDY

AS implied in the Inset 25 we must not _ASSUME_ that transmission of BSE to other species will invariably present pathology typical of a scrapie-like disease.

snip...

76 pages on hound study;

snip...

39.Hound ataxia had reportedly been occurring since the 1930's, and a known risk factor for its development was the feeding to hounds of downer cows, and particularly bovine offal. Circumstantial evidence suggests that bovine offal may also be causal in FSE, and TME in mink. Despite the inconclusive nature of the neuropathology, it was clearly evident that this putative canine spongiform encephalopathy merited further investigation.

40.The inconclusive results in hounds were never confirmed, nor was the link with hound ataxia pursued. I telephoned Robert Higgins six years after he first sent the slides to CVL. I was informed that despite his submitting a yearly report to the CVO including the suggestion that the hound work be continued, no further work had been done since 1991. This was surprising, to say the very least.

41.The hound work could have provided valuable evidence that a scrapie-like agent may have been present in cattle offal long before the BSE epidemic was recognised. The MAFF hound survey remains unpublished.

Histopathological support to various other published MAFF experiments

42.These included neuropathological examination of material from experiments studying the attempted transmission of BSE to chickens and pigs (CVL 1991) and to mice (RVC 1994).


Monday, February 14, 2011

THE ROLE OF PREDATION IN DISEASE CONTROL: A COMPARISON OF SELECTIVE AND NONSELECTIVE REMOVAL ON PRION DISEASE DYNAMICS IN DEER

NO, NO, NOT NO, BUT HELL NO !

Journal of Wildlife Diseases, 47(1), 2011, pp. 78-93 © Wildlife Disease Association 2011


Monday, March 8, 2010

Canine Spongiform Encephalopathy aka MAD DOG DISEASE


=============================

FRIDAY, DECEMBER 14, 2012


Susceptibility of domestic cats to chronic wasting disease

Candace K. Mathiason1,#, Amy V. Nalls1, Davis M. Seelig1, Susan L. Kraft2, Kevin Carnes2, Kelly R. Anderson1, Jeanette Hayes-Klug1 and Edward A. Hoover1

+ Author Affiliations

1Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523 2Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523

ABSTRACT

Domestic and non-domestic cats have been shown to be susceptible to feline spongiform encephalopathy (FSE), almost certainly caused by consumption of bovine spongiform encephalopathy (BSE)-contaminated meat. Because domestic and free-ranging non-domestic felids scavenge cervid carcasses, including those in areas affected by chronic wasting disease (CWD), we evaluated the susceptibility of the domestic cat (Felis catus) to CWD infection experimentally. Cohorts of n=5 cats each were inoculated intracerebrally (IC) or orally (PO) with CWD-infected deer brain. At 40 and 42 months post inoculation, two IC-inoculated cats developed signs consistent with prion disease including a stilted gait, weight loss, anorexia, polydipsia, patterned motor behaviors, head and tail tremors and ataxia, and progressed to terminal disease within 5 months. Brains from these two cats were pooled and inoculated into cohorts of cats by IC, PO, and IP/SQ (intraperitoneal/subcutaneous) routes. Upon sub-passage, feline CWD was transmitted to all IC-inoculated cats with a decreased incubation period of 23-27 months. Feline-adapted CWD (FelCWD) was demonstrated in the brains of all the affected cats by western blot and immunohistochemical analysis. Magnetic resonance imaging revealed abnormalities in clinically ill cats, which included multifocal T2 FLAIR signal hyperintensities, ventricular size increases, prominent sulci and white matter tract cavitation. Currently, 3 of 4 IP/SQ and 2 of 4 PO secondary passage inoculated cats have developed abnormal behavior patterns consistent with the early stage of feline CWD. These results demonstrate that CWD can be transmitted and adapted to the domestic cat, thus raising the issue of potential cervid-to-feline transmission in nature.

FOOTNOTES

↵# To whom correspondence should be addressed. candace.mathiason@colostate.edu, 1619 Campus Delivery, Fort Collins, CO 80523-1619, 970 491-3975

Copyright © 2012, American Society for Microbiology. All Rights Reserved.


HOWEVER, why ignore the old science and transmission studies to date ???

Species Born Onset/Died

Ocelot May 1987 Mar 1994 Ocelot Jul 1980 Oct 1995 Puma 1986 May 1991 Puma 1980 May 1995 Puma 1978 May 1995 Lion Nov 1986 Dec 1998 Tiger 1981 Dec 1995 Tiger Feb 1983 Oct 1998 Ankole 1987 May 1995 Ankole 1986 Feb 1991 Bison 1989/90 Oct 1996

Maff data on 15 May 99

kudu 6 gemsbok 1 nyala 1 oryx 2 eland 6 cheetah 9 puma 3 tiger 2 ocelot 2 bison 1 ankole 2 lion 1


Feline Spongiform Encephalopathy (FSE) FSE was first identified in the UK in 1990. Most cases have been reported in the UK, where the epidemic has been consistent with that of the BSE epidemic. Some other countries (e.g. Norway, Liechtenstein and France) have also reported cases.

Most cases have been reported in domestic cats but there have also been cases in captive exotic cats (e.g. Cheetah, Lion, Asian leopard cat, Ocelot, Puma and Tiger). The disease is characterised by progressive nervous signs, including ataxia, hyper-reactivity and behavioural changes and is fatal.

The chemical and biological properties of the infectious agent are identical to those of the BSE and vCJD agents. These findings support the hypothesis that the FSE epidemic resulted from the consumption of food contaminated with the BSE agent.

The FSE epidemic has declined as a result of tight controls on the disposal of specified risk material and other animal by-products.

References: Leggett, M.M. et al.(1990) A spongiform encephalopathy in a cat. Veterinary Record. 127. 586-588

Synge, B.A. et al. (1991) Spongiform encephalopathy in a Scottish cat. Veterinary Record. 129. 320

Wyatt, J. M. et al. (1991) Naturally occurring scrapie-like spongiform encephalopathy in five domestic cats. Veterinary Record. 129. 233.

Gruffydd-Jones, T. J.et al.. (1991) Feline spongiform encephalopathy. J. Small Animal Practice. 33. 471-476.

Pearson, G. R. et al. (1992) Feline spongiform encephalopathy: fibril and PrP studies. Veterinary Record. 131. 307-310.

Willoughby, K. et al. (1992) Spongiform encephalopathy in a captive puma (Felis concolor). Veterinary Record. 131. 431-434.

Fraser, H. et al. (1994) Transmission of feline spongiform encephalopathy to mice. Veterinary Record 134. 449.

Bratberg, B. et al. (1995) Feline spongiform encephalopathy in a cat in Norway. Veterinary Record 136. 444

Baron, T. et al. (1997) Spongiform encephalopathy in an imported cheetah in France. Veterinary Record 141. 270-271

Zanusso, G et al. (1998) Simultaneous occurrence of spongiform encephalopathy in a man and his cat in Italy. Lancet, V352, N9134, OCT 3, Pp 1116-1117.

Ryder, S.J. et al. (2001) Inconsistent detection of PrP in extraneural tissues of cats with feline spongiform encephalopathy. Veterinary Record 146. 437-441

Kelly, D.F. et al. (2005) Neuropathological findings in cats with clinically suspect but histologically unconfirmed feline spongiform encephalopathy. Veterinary Record 156. 472-477.

TSEs in Exotic Ruminants TSEs have been detected in exotic ruminants in UK zoos since 1986. These include antelopes (Eland, Gemsbok, Arabian and Scimitar oryx, Nyala and Kudu), Ankole cattle and Bison. With hindsight the 1986 case in a Nyala was diagnosed before the first case of BSE was identified. The TSE cases in exotic ruminants had a younger onset age and a shorter clinical duration compared to that in cattle with BSE. All the cases appear to be linked to the BSE epidemic via the consumption of feed contaminated with the BSE agent. The epidemic has declined as a result of tight controls on feeding mammalian meat and bone meal to susceptible animals, particularly from August 1996.

References: Jeffrey, M. and Wells, G.A.H, (1988) Spongiform encephalopathy in a nyala (Tragelaphus angasi). Vet.Path. 25. 398-399

Kirkwood, J.K. et al (1990) Spongiform encephalopathy in an Arabian oryx (Oryx leucoryx) and a Greater kudu (Tragelaphus strepsiceros) Veterinary Record 127. 418-429.

Kirkwood, J.K. (1993) Spongiform encephalopathy in a herd of Greater kudu (Tragelaphus strepsiceros): epidemiological observations. Veterinary Record 133. 360-364

Kirkwood, J. K. and Cunningham, A.A. (1994) Epidemiological observations on spongiform encephalopathies in captive wild animals in the British Isles. Veterinary Record. 135. 296-303.

Food and Agriculture Organisation (1998) Manual on Bovine Spongiform Encephalopathy.


TSE and Surveillance Statistics Exotic species and domestic cats November 2018 

Contents Number of confirmed cases of FSE in domestic cats by year 

Number of confirmed cases of FSE in domestic cats by year of birth 

Number of TSEs in exotic species by year reported

Transmissible Spongiform Encephalopathies in exotic species

Number of confirmed cases of FSE in domestic cats by year Data valid to 30 November 2018 Includes one case from Guernsey Year Reported No. of cases 1988 0 1989 0 1990 12 1991 12 1992 10 1993 11 1994 16 1995 8 1996 6 1997 6 1998 4 1999 2 2000 1 2001 1 2002 0 2003 0 2004 0 2005 0 2006 0 2007 0 2008 0 2009 0 2010 0 2011 0 2012 0 2013 0 2014 0 2015 0 2016 0 2017 0 2018 0 Total 89 Year of Onset No. of cases 1988 0 1989 1 1990 16 1991 11 1992 14 1993 10 1994 14 1995 4 1996 7 1997 8 1998 1 1999 1 2000 1 2001 1 2002 0 2003 0 2004 0 2005 0 2006 0 2007 0 2008 0 2009 0 2010 0 2011 0 2012 0 2013 0 2014 0 2015 0 2016 0 2017 0 2018 0 Total 89


FSE: FIRST CONFIRMED CASE REPORTED IN PORTUGAL AND POTENTIAL MAD CAT ESCAPES LAB IN USA Date: August 9, 2007 at 2:27 pm PST

DIA-45 FELINE SPONGIFORM ENCEPHALOPATHY: FIRST CONFIRMED CASE REPORTED IN PORTUGAL

J.F. Silva1, J.J. Correia, 1 J. Ribeiro2, S. Carmo2 and L.Orge3

1 Faculdade de Medicina Veterinária (UTL), Lisbon, Portugal 2 Clínica Veterinária Ani+, Queluz, Portugal 3 Laboratório Nacional de Investigação Veterinária, Unidade de BSE, Lisbon, Portugal

Feline spongiform encephalopathy (FSE), affecting domestic and captive feline species, is a prion disease considered to be related to bovine spongiform encephalopathy (BSE). Here we report the first case diagnosed in Portugal, highlighting the neuroapthological findings. In 2004 a 9-year old intact female Siamese cat was referred with chronic progressive behavioural changes, polydipsia, gait abnormalities and episodes of hypersalivation. Clinical signs progressed to tetraparesis and dementia and euthanasia was performed. At necropsy, brain and spinal cord had no significative changes. Tissue samples from brain, cerebellum, brainstem and spinal cord were collected for histopathology and immunohistochemistry for detection of PrPres. Histology revealed neuropil and neuronal perikarion vacuolation in several areas of the central nervous system together with gliosis and cell rarefaction at the granular layer of the cerebellum. Immunohistochemical detection of PrPres showed a strong and widespread PrPres accumulation as granular and linear deposits as well as associated with some neurons. These findings are supportive of FSE. To the authors knowledge this is the first confirmed case of FSE reported in Portugal.




DOCKET-- 03D-0186 -- FDA Issues Draft Guidance on Use of Material From Deer and Elk in Animal Feed; Availability

Date: Fri, 16 May 2003 11:47:37 –0500

EMC 1 Terry S. Singeltary Sr. Vol #: 1


IN CONFIDENCE CJD TO CATS...

It should be noted that under experimental conditions cats succumb to an encephalopathy after intracerebral inoculation of material derived from patients affected with Creutzfeldt-Jakob Disease.


FELINE SPONGIFORM ENCEPHALOPATHY FSE




Terry S. Singeltary Sr.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.